教科書・ノートなどを参考に下記の課題に取り組んで下さい。 中野忠雄

アミノ酸・タンパク質について
問1 次の文章中の()に適当な語句などを記入しよう。
タンパク質は、()・脂質と並ぶ三大栄養素の一つである。タンパク質は、()が直鎖状に
多数結合した構造をしている。タンパク質を構成するアミノ酸の種類は、()種類あり、アミノ酸の
配列順序によってタンパク質の性質は異なる。
アミノ酸は、()基による塩基性と()基による酸性の両方の性質を持つことから両性電
解質である。アミノ酸の性質は、側鎖基 (R) の違いにより表れる。アミノ酸同士がペプチド結合で鎖
状に結合したものを、()といい、アミノ酸が2個結合したものをジペプチド、いくつか結合し
たものをオリゴペプチド、たくさん結合したものを()という。
一般的にタンパク質のアミノ酸配列のことをタンパク質の()構造と呼び、ポリペプチド鎖
(タンパク質) の両端は、アミノ基がある側を()末端、カルボキシル基がある側を()
末端とよばれる。実際のタンパク質は、側鎖基(R)のもつカルボキシル基やヒドロキシ基同士が
() 結合をしたり、硫黄 (S) を持つアミノ酸である () 同士が () 結合する
ことや疎水基同士が結合するなどの要因から、一本のポリペプチド鎖はその種類によってきまった折り
たたまれかたをしている。また、折りたたみかたには共通のパターンがあり、ポリペプチド鎖が往復し
次々と折りたたまれている構造のことを ()、規則正しくらせん状になり固い円柱状の構造のこ
とを () という。一本のポリペプチド鎖が、部分的にこのような構造を取りながら立体的な構
造を取っているが、この立体構造のことを()構造という。さらに、タンパク質の中にはいく
つかの()が、結合して機能を発揮するものもある。いくつかの()が、結合してい
る構造を四次構造という。
タンパク質は細胞の核内にある () の情報をもとに合成される。いわば () は、
「タンパク質の設計図」みたいな物であり、タンパク質を作る暗号が並んでいる。タンパク質が合成さ
れるとき、まず()から『()のコピー』として()が合成される。()
は、『タンパク質の工場』である () に運ばれる。 () では、 () の塩基配
列に従い()がアミノ酸を運搬しタンパク質は合成される。()で合成されたタンパク
質は、()と()で()などを結合され完成する。
触媒とは特定の化学反応の速度を高める物質のことで、触媒自体は反応の前後で変化をしない。酵素
は、() でできており、生体内での化学反応の触媒となる物質で生体触媒とも言われる。酵素は
その反応を() ℃前後という低温で、pH() 前後で行うことができることが特徴である。

また、通常の化学反応では、有機化合物の化学反応は有機溶媒中で行われるが、酵素を使うことで
() 溶液中でも有機化学反応を進行させることができる。生体内では、常に多くの有機化合物
の化学反応が同時に整然と進行しており、その化学反応に酵素は必要不可欠なものなのである。
例えば、()はタンパク質を分解しアミノ酸を生成する酵素であるが、この反応でタンパク質
に相当するものを()といい、アミノ酸に相当するものを()という。タンパク質
は、その種類によって決まった立体構造を持つが、酵素も同様であり、その立体構造の違いにより酵素
が作用する()が決まっている。このように酵素が特定の()にしか作用しないこと
を酵素の()という。酵素は、他のタンパク質と同様に強い()・塩基や()な
どにより変性することがある。酵素溶液に強い ()・塩基を加えたり、()すると酵素
が失活するのはそのためである。
食品の製造にも、多くの酵素が利用されている。日本酒・味噌などを製造する際に用いられる
()は、蒸煮した米に ()を培養したものである。日本酒を製造する際、原料米に含
まれるデンプンは()が分泌する()によって分解され()に転換される。
さらに、()はS.セレビシエが菌体内部で分泌する各種酵素によって()と()
に転換される。味噌製造においては、大豆に含まれるタンパク質は、()が分泌する()
によって分解され()に転換される。味噌の旨味成分は、主に()である。
問2 タンパク質の役割について知っていることをまとめてみよう。

問3 アミノ酸の構造を図示しよう。

問4 ペプチド結合とはどのような結合様式であるか図示しよう。

問 6 下記に示す反応式は、グルコースを発酵してエタノールを生成する反応式である。() に適当な 化学式などを記入し反応式を完成させなさい。

$$C_6H_{12}O_6 \rightarrow () + ()$$

問7 ヨーグルトの製造原理について次の問に答えなさい。

①乳酸菌とはどのような機能を持つ細菌であるか説明しなさい。

②ホモ型乳酸菌とヘテロ型乳酸菌の違いを説明してみよう。 ホモ型乳酸菌

ヘテロ型乳酸菌

③牛乳に乳酸菌を接種し適当な温度で保温するとヨーグルトができる。この原理を下記のキーワードを 参考に説明しよう。

<キーワード> カゼイン 等電点 乳酸菌 乳酸